Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharm Biol ; 60(1): 1317-1330, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35811507

RESUMO

CONTEXT: Solanaceae glycoalkaloids (SGAs) possess cardiomodulatory activity. OBJECTIVE: This study investigated the potential interaction between verapamil and glycoalkaloids. MATERIAL AND METHODS: The cardioactivity of verapamil and glycoalkaloids (α-solanine and α-chaconine) was tested in adult beetle (Tenebrio molitor) myocardium in vitro using microdensitometric methods. The myocardium was treated with pure substances and mixtures of verapamil and glycoalkaloids for 9 min with saline as a control. Two experimental variants were used: simultaneous application of verapamil and glycoalkaloids or preincubation of the myocardium with one of the compounds followed by perfusion with a verapamil solution. We used 9 × 10-6-5 × 10-5 M and 10-9-10-5 M concentration for verapamil and glycoalkaloids, respectively. RESULTS: Verapamil, α-solanine and α-chaconine showed cardioinhibitory activity with IC50 values equal to 1.69 × 10-5, 1.88 × 10-7 and 7.48 × 10-7 M, respectively. When the glycoalkaloids were applied simultaneously with verapamil, an antagonistic effect was observed with a decrease in the maximal inhibitory effect and prolongation of t50 and the recovery time characteristic of verapamil. We also confirmed the expression of two transcript forms of the gene that encodes the α1 subunit of L-type calcium channels in the myocardium and brain with equal transcription levels of both forms in the myocardium and significant domination of the shorter form in the brain of the insect species tested. DISCUSSION AND CONCLUSIONS: The results show that attention to the composition of the daily diet during therapy with various drugs is particularly important. In subsequent studies, the nature of interaction between verapamil and SGAs on the molecular level should be checked, and whether this interaction decreases the efficiency of cardiovascular therapy with verapamil in humans.


Assuntos
Solanaceae , Solanina , Solanum tuberosum , Solanina/análogos & derivados , Solanina/farmacologia , Verapamil/farmacologia
2.
Toxins (Basel) ; 13(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34564621

RESUMO

Glycoalkaloids, secondary metabolites abundant in plants belonging to the Solanaceae family, may affect the physiology of insect pests. This paper presents original results dealing with the influence of a crude extract obtained from Solanum nigrum unripe berries and its main constituent, solasonine, on the physiology of Galleria mellonella (Lepidoptera) that can be used as an alternative bioinsecticide. G. mellonella IV instar larvae were treated with S. nigrum extract and solasonine at different concentrations. The effects of extract and solasonine were evaluated analyzing changes in carbohydrate and amino acid composition in hemolymph by RP-HPLC and in the ultrastructure of the fat body cells by TEM. Both extract and solasonine changed the level of hemolymph metabolites and the ultrastructure of the fat body and the midgut cells. In particular, the extract increased the erythritol level in the hemolymph compared to control, enlarged the intracellular space in fat body cells, and decreased cytoplasm and lipid droplets electron density. The solasonine, tested with three concentrations, caused the decrease of cytoplasm electron density in both fat body and midgut cells. Obtained results highlighted the disturbance of the midgut and the fat body due to glycoalkaloids and the potential role of hemolymph ingredients in its detoxification. These findings suggest a possible application of glycoalkaloids as a natural insecticide in the pest control of G. mellonella larvae.


Assuntos
Corpo Adiposo/efeitos dos fármacos , Hemolinfa/efeitos dos fármacos , Inseticidas , Mariposas , Extratos Vegetais , Alcaloides de Solanáceas , Solanum nigrum/química , Animais , Sistema Digestório/efeitos dos fármacos , Sistema Digestório/ultraestrutura , Corpo Adiposo/ultraestrutura , Hemolinfa/metabolismo , Controle de Insetos , Larva/crescimento & desenvolvimento , Larva/metabolismo , Larva/ultraestrutura , Microscopia Eletrônica de Transmissão , Mariposas/crescimento & desenvolvimento , Mariposas/metabolismo , Mariposas/ultraestrutura
3.
Toxins (Basel) ; 12(10)2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987787

RESUMO

Synthetic insecticides are widely used for crop protection both in the fields and in the food stored facilities. Due to their toxicity, and assumptions of Integrated Pest Management, we conducted two independent experiments, where we studied the influence of Solanum nigrum unripe fruit extract on the toxicity of an organophosphorus insecticide fenitrothion. In the first variant of the experiment, Tenebrio molitor larvae were fed with blended fenitrothion (LC50) and the extract in four concentrations (0.01, 0.1, 1 and 10%) in ratio 1:1 for 3 days. In the second variant, a two-day application of fenitrothion (LC40) was preceded by a one-day extract treatment. The first variant did not show any increase in lethality compared to fenitrothion; however, ultrastructure observations exhibited swollen endoplasmic reticulum (ER) membranes in the midgut and nuclear and cellular membranes in the fat body, after application of blended fenitrothion and extract. An increased amount of heterochromatin in the fat body was observed, too. In the second variant, pre-treatment of the extract increased the lethality of larvae, decreased the level of glycogen and lipids in the fat body and disrupted integrity of midgut cellular membranes. S. nigrum extract, applied prior to fenitrothion treatment can be a factor increasing fenitrothion toxicity in T. molitor larvae. Thus, this strategy may lead to decreased emission of synthetic insecticides to the environment.


Assuntos
Fenitrotion/toxicidade , Frutas , Inseticidas/toxicidade , Extratos Vegetais/toxicidade , Solanum nigrum , Tenebrio/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Fenitrotion/síntese química , Frutas/química , Inseticidas/síntese química , Inseticidas/isolamento & purificação , Larva/efeitos dos fármacos , Larva/metabolismo , Dose Letal Mediana , Extratos Vegetais/isolamento & purificação , Solanum nigrum/química , Tenebrio/embriologia , Tenebrio/metabolismo
4.
Toxins (Basel) ; 11(5)2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31121818

RESUMO

The usage of insects as model organisms is becoming more and more common in toxicological, pharmacological, genetic and biomedical research. Insects, such as fruit flies (Drosophila melanogaster), locusts (Locusta migratoria), stick insects (Baculum extradentatum) or beetles (Tenebrio molitor) are used to assess the effect of different active compounds, as well as to analyse the background and course of certain diseases, including heart disorders. The goal of this study was to assess the influence of secondary metabolites extracted from Solanaceae and Brassicaceae plants: Potato (Solanum tuberosum), tomato (Solanum lycopersicum), black nightshade (Solanum nigrum) and horseradish (Armoracia rusticana), on T. molitor beetle heart contractility in comparison with pure alkaloids. During the in vivo bioassays, the plants glycoalkaloid extracts and pure substances were injected at the concentration 10-5 M into T. molitor pupa and evoked changes in heart activity. Pure glycoalkaloids caused mainly positive chronotropic effects, dependant on heart activity phase during a 24-h period of recording. Moreover, the substances affected the duration of the heart activity phases. Similarly, to the pure glycoalkaloids, the tested extracts also mainly accelerated the heart rhythm, however S. tuberosum and S. lycopersicum extracts slightly decreased the heart contractions frequency in the last 6 h of the recording. Cardioacceleratory activity of only S. lycopersicum extract was higher than single alkaloids whereas S. tubersoum and S. nigrum extracts were less active when compared to pure alkaloids. The most cardioactive substance was chaconine which strongly stimulated heart action during the whole recording after injection. A. rusticana extract which is composed mainly of glucosinolates did not significantly affect the heart contractions. Obtained results showed that glycoalkaloids were much more active than glucosinolates. However, the extracts depending on the plant species might be more or less active than pure substances.


Assuntos
Alcaloides/farmacologia , Armoracia/metabolismo , Extratos Vegetais/farmacologia , Solanum/metabolismo , Tenebrio/efeitos dos fármacos , Alcaloides/metabolismo , Animais , Frutas/química , Frutas/metabolismo , Contração Miocárdica/efeitos dos fármacos , Folhas de Planta/química , Folhas de Planta/metabolismo , Pupa/efeitos dos fármacos , Pupa/fisiologia , Metabolismo Secundário , Tenebrio/fisiologia
5.
Front Physiol ; 10: 319, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984018

RESUMO

Model organisms are often used in biological, medical and environmental research. Among insects, Drosophila melanogaster, Galleria mellonella, Apis mellifera, Bombyx mori, Periplaneta americana, and Locusta migratoria are often used. However, new model organisms still appear. In recent years, an increasing number of insect species has been suggested as model organisms in life sciences research due to their worldwide distribution and environmental significance, the possibility of extrapolating research studies to vertebrates and the relatively low cost of rearing. Beetles are the largest insect order, with their representative - Tribolium castaneum - being the first species with a completely sequenced genome, and seem to be emerging as new potential candidates for model organisms in various studies. Apart from T. castaneum, additional species representing various Coleoptera families, such as Nicrophorus vespilloides, Leptinotarsa decemlineata, Coccinella septempunctata, Poecilus cupreus, Tenebrio molitor and many others, have been used. They are increasingly often included in two major research aspects: biomedical and environmental studies. Biomedical studies focus mainly on unraveling mechanisms of basic life processes, such as feeding, neurotransmission or activity of the immune system, as well as on elucidating the mechanism of different diseases (neurodegenerative, cardiovascular, metabolic, or immunological) using beetles as models. Furthermore, pharmacological bioassays for testing novel biologically active substances in beetles have also been developed. It should be emphasized that beetles are a source of compounds with potential antimicrobial and anticancer activity. Environmental-based studies focus mainly on the development and testing of new potential pesticides of both chemical and natural origin. Additionally, beetles are used as food or for their valuable supplements. Different beetle families are also used as bioindicators. Another important research area using beetles as models is behavioral ecology studies, for instance, parental care. In this paper, we review the current knowledge regarding beetles as model organisms and their practical application in various fields of life science.

6.
Toxins (Basel) ; 10(12)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30513736

RESUMO

BACKGROUND: Solanaceae plants produce glycoalkaloids (GAs) that affect various physiological processes of herbivorous insects and they are being tested as potential alternatives for synthetic pesticides. They cause lethal and sublethal effects. Nevertheless, their mode of action remains unclear. Therefore, we examined the effects of Solanum nigrum fruit extracts and pure glycoalkaloids on a model beetle, Tenebrio molitor. METHODS: Plant extracts or pure alkaloids were added to the food of the larvae for three days. The lipid, glycogen, and protein content in the fat body and the midgut were determined, and the contractility of the heart, hindgut, and oviduct muscles was tested using the video-microscopy technique. Finally, the ultrastructure of the fat body and the midgut was observed using electron microscopy. RESULTS: No lethal effects were noted. Sublethal changes were observed in the content of biomolecules, malformations of organelles, chromatin condensation, and heart and oviduct contractility. The observed effects differed between the tested glycoalkaloids and the extract. CONCLUSIONS: Both the extract and pure GAs have a wide range of effects that may result in impaired development, food intake, and reproduction. Some early effects may be used as bioindicators of stress. The effects of the extract and pure alkaloids suggest that the substances produced by the plant may act additively or synergistically.


Assuntos
Alcaloides/toxicidade , Extratos Vegetais/toxicidade , Solanum nigrum , Tenebrio/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Corpo Adiposo/efeitos dos fármacos , Corpo Adiposo/patologia , Feminino , Frutas , Glicogênio/metabolismo , Coração/efeitos dos fármacos , Coração/fisiologia , Proteínas de Insetos/metabolismo , Intestinos/efeitos dos fármacos , Intestinos/patologia , Intestinos/fisiologia , Larva/efeitos dos fármacos , Larva/fisiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Oviductos/efeitos dos fármacos , Oviductos/fisiologia , Tenebrio/fisiologia
7.
Ecotoxicol Environ Saf ; 162: 454-463, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30015192

RESUMO

Plant-derived substances, because of high biological activity, arouse interest of many scientists. Thus, plant extracts and pure substances are intensively studied on various insects as potential insecticides. In such studies, D. melanogaster is one of the most important model organisms. In our studies, we analysed the contents of two plant extracts and tested the activity of their main components against fruit flies and compared observed effects to effects caused by crude extracts. Then, we assessed the development of the next, unexposed generation. The chemical analysis of extracts revealed the presence of numerous glycoalkaloids and glucosinolates in Solanum nigrum and Armoracia rusticana extracts. These extracts, as well as their main components, revealed lethal and sublethal effects, such as the altered developmental time of various life stages and malformations of imagoes. Interestingly, the results for the extracts and pure main compounds often varied. Some of the results were also observed in the unexposed generation. These results confirm that the tested plants produce a range of substances with potential insecticidal effects. The different effects of extracts and pure main components suggest the presence of minor compounds, which should be tested as insecticides.


Assuntos
Armoracia/química , Drosophila melanogaster/efeitos dos fármacos , Inseticidas/farmacologia , Estágios do Ciclo de Vida/efeitos dos fármacos , Extratos Vegetais/farmacologia , Solanum nigrum/química , Alcaloides/análise , Alcaloides/farmacologia , Animais , Drosophila melanogaster/fisiologia , Glucosinolatos/análise , Glucosinolatos/farmacologia , Insetos/efeitos dos fármacos , Reprodução
8.
Compr Rev Food Sci Food Saf ; 17(5): 1339-1366, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33350162

RESUMO

Plants are sources of numerous active substances that are used to protect crops. Currently, due to the limitations of using synthetic insecticides, plant products have attracted increasing attention as possible pesticides. In this review, we discuss some of the most interesting plant products (for example, Solanaceae, or Asteraceae extracts, Artemisia absinthium or Citrus spp. essential oils, and single compounds like α-chaconine, or α-solanine) that exhibit insecticidal activity against beetles that are pests of stored food products. Next, we describe and discuss the mode of action of these products, including lethal and sublethal effects, such as antifeedant or neurotoxic activity, ultrastructural malformation, and effects on prooxidant/antioxidant balance. Furthermore, the methods of application of plant-derived substances in food storage areas are presented.

9.
Curr Med Chem ; 24(29): 3116-3152, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28552052

RESUMO

BACKGROUND: Insects are the largest and the most widely distributed group of animals in the world. Their diversity is a source of incredible variety of different mechanisms of life processes regulation. There are many agents that regulate immunology, reproduction, growth and development or metabolism. Hence, it seems that insects may be a source of numerous substances useful in human diseases treatment. Especially important in the regulation of insect physiology are peptides, like neuropeptides, peptide hormones or antimicrobial peptides. There are two main aspects where they can be helpful, 1) Peptides isolated from insects may become potential drugs in therapy of different diseases, 2) A lot of insect peptide hormones show structural or functional homology to mammalian peptide hormones and the comparative studies may give a new look on human disorders. In our review we focused on three group of insect derived peptides: 1) immune-active peptides, 2) peptide hormones and 3) peptides present in venoms. CONCLUSION: In our review we try to show the considerable potential of insect peptides in searching for new solutions for mammalian diseases treatment. We summarise the knowledge about properties of insect peptides against different virulent agents, anti-inflammatory or anti-nociceptive properties as well as compare insect and mammalian/vertebrate peptide endocrine system to indicate usefulness of knowledge about insect peptide hormones in drug design. The field of possible using of insect delivered peptide to therapy of various human diseases is still not sufficiently explored. Undoubtedly, more attention should be paid to insects due to searching new drugs.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Venenos de Artrópodes/farmacologia , Proteínas de Insetos/farmacologia , Neuropeptídeos/farmacologia , Hormônios Peptídicos/farmacologia , Animais , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Peptídeos Catiônicos Antimicrobianos/imunologia , Antineoplásicos/farmacologia , Venenos de Artrópodes/imunologia , Descoberta de Drogas , Humanos , Proteínas de Insetos/imunologia , Insetos/imunologia , Neuropeptídeos/imunologia , Hormônios Peptídicos/imunologia
10.
PLoS One ; 12(3): e0173100, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28253309

RESUMO

Protective mechanisms against cold stress are well studied in terrestrial and polar insects; however, little is known about these mechanisms in tropical insects. In our study, we tested if a tropical cockroach Gromphadorhina coquereliana, possesses any protective mechanisms against cold stress. Based on the results of earlier studies, we examined how short-term (3 h) cold (4°C) influences biochemical parameters, mitochondrial respiration activity, and the level of HSPs and aquaporins expression in the fat body and leg muscles of G. coquereliana. Following cold exposure, we found that the level of carbohydrates, lipids and proteins did not change significantly. Nevertheless, we observed significant changes in mitochondrial respiration activity. The oxygen consumption of resting (state 4) and phosphorylating (state 3) mitochondria was altered following cold exposure. The increase in respiratory rate in state 4 respiration was observed in both tissues. In state 3, oxygen consumption by mitochondria in fat body was significantly lower compared to control insects, whereas there were no changes observed for mitochondria in muscle tissue. Moreover, there were cold-induced changes in UCP protein activity, but the changes in activity differed in fat body and in muscles. Additionally, we detected changes in the level of HSP70 and aquaporins expression. Insects treated with cold had significantly higher levels of HSP70 in fat body and muscles. On the other hand, there were lower levels of aquaporins in both tissues following exposure to cold. These results suggest that fat body play an important role in protecting tropical insects from cold stress.


Assuntos
Baratas/fisiologia , Temperatura Baixa , Corpo Adiposo/fisiologia , Músculos/fisiologia , Estresse Fisiológico , Animais , Fosforilação
11.
Microsc Res Tech ; 79(10): 948-958, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27440448

RESUMO

Beet Armyworm, Spodoptera exigua is a herbivorous moth and a serious pest of many economically important plants, which are used as food sources. Because of rigorous standards of food quality, usage of synthetic insecticides in crop protection, against pests, is limited. Solanaceae plant extracts may be a relatively cheap source of efficient natural insecticides that can limit usage of synthetic substances. Their biological activity is not fully known. In particular, ultrastructural studies, using transmission electron microscopy, are not usual. In the present article we describe the effects of sublethal concentrations of tomato and potato leaf extracts against S. exigua. Acute lethal effects were not observed. Both extracts exerted similar effects within midgut and fat body cells. Midgut cells were not significantly altered while fat body cells showed prominent swelling of nuclear envelope and endoplasmic reticulum, vacuolization of mitochondria and fusion of fat droplets. These changes were much more intensive within groups exposed to potato than tomato extracts at highest concentration at least. Light microscopy was used to observe and document developmental alterations of S. exigua exposed to potato and tomato leaf extracts. Potato leaf extracts significantly decreased hatching success and caused morphological malformations of imagoes. Among them, malformations of wings were the most prominent. Interestingly, these effects were not observed within populations exposed to tomato extracts at highest concentration at least.


Assuntos
Inseticidas/farmacologia , Extratos Vegetais/farmacologia , Solanum lycopersicum/química , Solanum tuberosum/química , Spodoptera/efeitos dos fármacos , Spodoptera/ultraestrutura , Animais , Feminino , Larva/efeitos dos fármacos , Masculino , Microscopia Eletrônica de Transmissão
12.
Artigo em Inglês | MEDLINE | ID: mdl-25624163

RESUMO

Insects cope with thermal stressors using mechanisms such as rapid cold hardening and acclimation. These mechanisms have been studied in temperate insects, but little is known about their use by tropical insects in response to cold stress. Here, we investigated whether cold stress (1×8 h and 3×8 h at 4°C) triggers a metabolic response in the Madagascar cockroach Gromphadorhina coquereliana. We examined the effects of cold on the levels of selected metabolites in the fat body tissue of G. coquereliana. After cold exposure, we found that the quantity of total protein increased significantly in the insect fat body, whereas glycogen decreased slightly. Using antibodies, we observed upregulation of AQP-like proteins and changes in the HSP70 levels in the fat body of G. coquereliana when exposed to cold. We also examined the content and nature of the free sugars in the G. coquereliana hemolymph and discovered an increase in the levels of polyols and glucose in response to cold stress. These results suggest an important role of the fat body tissue of tropical insects upon cold exposure.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Proteínas de Insetos/metabolismo , Insetos/fisiologia , Adaptação Fisiológica , Animais , Temperatura Baixa , Corpo Adiposo/fisiologia , Glicogênio/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Hemolinfa/metabolismo , Insetos/metabolismo , Metabolismo dos Lipídeos , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...